Angiotensin II promotes differentiation of mouse c-kit-positive cardiac stem cells into pacemaker-like cells

نویسندگان

  • CHENG XUE
  • JUN ZHANG
  • ZHAN LV
  • HUI LIU
  • CONGXIN HUANG
  • JING YANG
  • TEN WANG
چکیده

Cardiac stem cells (CSCs) can differentiate into cardiac muscle‑like cells; however, it remains unknown whether CSCs may possess the ability to differentiate into pacemaker cells. The aim of the present study was to determine whether angiotensin II (Ang II) could promote the specialization of CSCs into pacemaker‑like cells. Mouse CSCs were treated with Ang II from day 3-5, after cell sorting. The differentiation potential of the cells was then analyzed by morphological analysis, flow cytometry, reverse transcription‑polymerase chain reaction, immunohistochemistry and patch clamp analysis. Treatment with Ang II resulted in an increased number of cardiac muscle‑like cells (32.7 ± 4.8% vs. 21.5 ± 4.8%; P<0.05), and inhibition of smooth muscle‑like cells (6.2 ± 7.3% vs. 20.5 ± 5.1%; P<0.05). Following treatment with Ang II, increased levels of the cardiac progenitor‑specific markers GATA4 and Nkx2.5 were observed in the cells. Furthermore, the transcript levels of pacemaker function‑related genes, including hyperpolarization‑activated cyclic nucleotide‑gated (HCN)2, HCN4, T‑box (Tbx)2 and Tbx3, were significantly upregulated. Immunofluorescence analysis confirmed the increased number of pacemaker‑like cells. The pacemaker current (If) was recorded in the cells derived from CSCs, treated with Ang II. In conclusion, treatment of CSCs with Ang II during the differentiation process modified cardiac‑specific gene expression and resulted in the enhanced formation of pacemaker‑like cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of Mouse Embryonic Stem Cell into Insulin-Secreting Cell

Purpose: Differentiation of mouse embryonic stem cells into Insulin secreting endocrine cells. Materials and Methods: In this study, Royan B1 mouse embryonic stem cell (derived from C57BL/6 mouse) were used. In directed differentiation method, embryonicstem cells after embryoid bodies formation were differentiated into insulin secreting cells. Nestin positive cells were obtained after culture ...

متن کامل

The Effect of Astrocyte-Conditioned Medium (ACM) and Retinoic Acid on Neural Differentiation of Mouse Embryonic Stem Cells

Purpose: The aim of this research was to study the properties of factors secreted from astrocyte cells in suspension medium in direct differentiation of mouse embryonic stem cells into neural cells. Materials and Methods: Royan B1 mouse embryonic stem (ES) cells were used in this experiment. For differentiation of Es cells into the neural cells, the astrocyte-condition medium (ACM) of mouse fe...

متن کامل

Effect of Mouse Liver Extract on in Vitro Differentiation of Amniotic Membrane Stem Cells into Hepatocyte-Like Cells

ABSTRACT &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Background and Objective: Multipotent placental amniotic membrane mesenchymal stem cells (MSCs) are capable of differentiating into specialized tissues under different conditions. The aim of this study was to induce differentiation of placental amniotic membrane MSCs from NMRI mouse into hepatocytes using liver extract. &nb...

متن کامل

Differentiation induction of mouse cardiac stem cells into sinus node-like cells by co-culturing with sinus node.

Sinus nodal cells can generate a diastolic or "pacemaker" depolarization at the end of an action potential driving the membrane potential slowly up to the threshold for firing the next action potential. It has been proved that adult cardiac stem cells (CSCs) can differentiate into sinus nodal cells by demethylating agent. However, there is no report about adult CSCs-derived sinus nodal cells wi...

متن کامل

O-3: Identification and Characterization of Repopulating Spermatogonial Stem Cells from The Adult Human Testis

Background: This study was conducted to identify and characterize repopulating spermatogonial stem cells (SSCs) in the adult human testes. Materials and Methods: Testes biopsies from obstructive azoospermic patients and normal segments of human testicular tissue were used. Flow cytometry, real time PCR and immunohistochemical analysis were performed. Purified human spermatogonia were transplant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015